+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Как информация поступает в мозг

Содержание

Как работает мозг. Мечты

Как информация поступает в мозг

Сегодня мы рассмотрим такие вопросы как: что такое мозг, из чего он состоит, какие функции выполняет и каким образом мы мыслим, вспоминаем и принимаем решения.

Что такое головной мозг и из чего состоит?

Это наш центральный процессор, системный администратор нашего тела, это орган ЦНС (Центральной нервной системы). От животных мы отличаемся способностью мыслить и прогнозировать, принимать невыгодные решения, но во благо других людей.

Почти 80% мозга состоит из воды (в основном в цитоплазме клеток), а еще 10-12% липидов (жира) и 8% протеина.

Хотя на его долю приходится всего 2% от массы тела, головной мозг использует полностью 20-25% поставок организмом кислорода, питательных веществ и глюкозы (в качестве топлива), все из которых поставляются постоянным потоком крови.

Головной мозг защищен толстыми костями черепа и гематоэнцефалическим барьером, но характер (как сложной системы) человеческого мозга, тем не менее, делает его неустойчивым ко многим видам заболеваний.

Около 100 миллиардов нейронов передают сигналы друг другу с помощью 1000 триллионов синаптических связей. Происходит постоянный приток и анализ различной информации из вне.

Мозг отвечает за контроль всех телесных действий и функций. Это также центр мышления, обучения и памяти. Мозг дает нам способности, чтобы думать, планировать, говорить, представлять, спать, использовать разум и эмоции.

Как мы размышляем?

В данный момент вы читаете этот текст, вы видите каждую букву, понимаете ее. Разберемся, почему же вы понимаете, что читаете и, твердо убеждены в правильности своих мыслей.

Это задача не из легких, но любую задачу можно решить, применив метод анализа, тоесть дробления сложного вопроса на понятные элементы, соответствующую статью CleverMind.ru скоро выпустит.

  1. Органы чувств. Они так называются, потому что взаимодействуют с окружающим вас миром. Выделяют 6 органов чувств: глаза, уши, нос, кожа, язык и вестибулярный аппарат. У животных в процессе эволюции были развиты еще и эхо-локация, ощущение магнитного поля Земли и другие чувства.

С органами чувств разбираться глубоко не будем, итак понятно, что такое кожа или уши. Но вернемся к нашему примеру, мы читаем, задействуем свои глаза. Что происходит дальше.

  1. Рецепторы. Любой из органов чувств имеет свои рецепторы, это нервные клетки находящиеся «в связке» с каким-либо органом чувств. Рецепторы в глазах трансформируют картинку от глаз, упорядочивают ее. Систематизируется информацию об оттенках цветов, которые вы видите, где какой цвет находится, о различных физических предметах и их местоположении в пространстве, о многих других вещах. Вся систематизируемая информация направляются во вставочные нейроны.

В нашем примере с чтением, на этом этапе, вы еще ничего не понимаете.

  1. Вставочные нейроны. Это нейроны-посредники, они получают информацию от рецепторов и меняют ее в электрические сигналы. Что-то наподобие азбуки Морзе, только вместо букв и точек мы имеем картинку перед нашими глазами и эти самые электрические сигналы. Весь этот поток «летит» к коре головного мозга, к нейронам, находящимся в нем. Представьте, что нейрон – это проходная комната. И первыми «открывают дверь в комнату» дендриты.

Ваш мозг все еще не понимает слов.

  1. Дендриты – это «входная дверь» в нейрон, уже в мозге (на самом деле информация может «пробить стену и влететь в нейрон» и без двери). Дендрит ПОНИМАЕТ, что пришла какая-то информация. Но сам он нифига не понимает, что это значит. Для него вы читаете что-то вроде «N?n h?o, w? de x?nx?», непонятные слова, ошибка 404. Дендрит отправляет эту информацию в «дверь выхода» — аксон.
  2. Аксон в нервной клетке имеет множество ответвлений, он ищет совпадения поступающей информации в других нейронах. И находит их! Ваш мозг, ВНЕЗАПНО, осознает, что знает русский язык, так как информации полно в других нейронах. И «дорожки» от одного нейрона к другому постоянно используются, они надежные, крепкие. Параллельно с этим, в аксонах вырабатываются нейромедиаторы, отвечающие за наше настроение, энергию и здоровье. И вот нейроны поздравляют друг друга нейромедиаторами за «взаимное согласие и понимание».

Вот как работает мозг в познавательной деятельности!

Резюмируя: глаза/уши/язык..

собирают информацию, она накапливается в соответствующих рецепторах, те ее структурируют и посылают во вставочный нерв, где она трансформируется в электрические сигналы, эти сигналы принимают нервные клетки и их дендриты в коре мозга. Дендриты направляют эту информацию в аксон «на поиск соответствия». Аксон «ищет совпадения» через нейронные связи с другими нейронами. Все это происходит за доли секунды.

Если аксон не находит «совпадения», то создается тоненькая связь с новым нейроном (да, они все-таки создаются). Чем больше вы учите новой информации – тем больше создается связей и тем они крепче.

Обратное правило: если вы не учите что-то, забываете, то связи становятся тоньше. Но их можно быстро восстановить!

Рассмотрим еще 3 интересных примера: вы учитесь водить автомобиль(А), вам на голову летит кирпич(Б) и вы ищете по дому шариковую ручку(В).

А. Представьте, что вы впервые сели за руль. Вокруг столько кнопочек, 3 педали (ну или 2), всякие коробки, зеркала, так еще нужно представлять габариты автомобиля, понимать, «проеду ли я тут?». И ведь вы вроде знаете, что «выжимаем тормоз, снимаем с ручника…». Вы пробуете это делать, но руки не слушают, ноги, случайно, педали выжимают не до конца, забыли включить фары и т.д. Что происходит?

Связи между нейронами, где хранится память о вождении авто есть, но нет связей проходящих к мышцам. Цель обучения – создавать и укреплять эти нервно-мышечные связи и создавать новые между нейронами в мозге. Чем больше учишься – тем больше связей между нейронами и тем они крепче.

Замечали, как быстро вы выключаете будильник по утрам?)
Б.

На вас летит кирпич! Типичная ситуация, с кем не бывало) Как только вы это осознаете, вы не ищете связи между нейронами с памятью о физике, вы не думаете, что «судя по его траектории, он пролетит мимо» или «он небольшой и попадет в плечо, а у меня толстая куртка и я ничего не почувствую».

Как только до дендритов доходит информация «о летящем на вас кирпиче», вся логичность просто выключается, за дело берутся инстинкты, и вы отпрыгиваете, даже если у вас болит нога/спина/живот и вообще вам лень. Где есть угроза жизни – рулят инстинкты. Где нет – происходит поиск в нейронах мозга и нервно-мышечных связях.

В. Ищете ручку. Вам поступил важный звонок, нужно кое-что быстренько записать. Вы начинаете искать ручку, ищете глазами, спрашиваете у кого-то, нигде нет. Мозг работает очень активно, проверяются десятки тысяч связей между нейронами.

Вырабатываются стрессовые нейромедиаторы, которые подгоняют мозг, как суровый офицер в армии гоняет солдат.

Стресса еще больше, вдруг начинают проверяться альтернативные варианты как записать, и вы записываете на своем же телефоне, на компьютере, забираете чужой мобильник и там пишете, пытаетесь запомнить. Вам уже плевать на все, нужно тупо записать.

Все прошло, вы поговорили, информация «сохранена». Нейроны снова активно вырабатывают нейромедиаторы, но уже положительные, «поздравляю вас, коллега!»

Теперь понимаете, почему вы можете потерять дома мобильный, но никогда полностью не разучитесь водить машину.

И еще! Наверно вы слышали, что продавцы в магазинах часто дают подержать товар в руки – это не просто так! Таким образом у вас задействованы почти все органы чувств, вы видите товар, чувствуете его, еще и продавец его нахваливает (звук) – нейроны и связи создаются очень быстро. Быстрее, чем вы бы просто прочитали обзор на этот товар. Вот такая тонкая психология.)

   Как мы мечтаем?

Мы можем мечтать абсолютно где угодно и когда угодно, это очень важная функция мозга! Мечты расслабляют человека, придают ему оптимизма, что, в конечном итоге, положительно сказывается на его отношении к окружающему миру. Ведь каким мы видим мир – такой он и есть.

Мечты добавляют осмысленность, логичность в нашу жизнь, как бы это странно не звучало. Они показывают к чему нам стремиться, и пока мы стремимся к мечте – мы счастливы.

Традиционно считается, что за мечты отвечает правое полушарие головного мозга. Формально это не совсем так, человек активно мечтает, когда «выключена» логика и рациональность + вырабатываются нейромедиаторы: эндорфин, ГАМК, серотонин, мелатонин. Необязательным условием является подавление «возбуждающих» нейромедиаторов.

Вспомните свое состояние, перед тем как начинаете мечтать, это монотонное и рутинное действие, когда вы не решаете никаких задач и нет стресса и «отключаетесь».
Что происходит в голове в момент «отключения» от реальности? Рассмотрим на примере.

Достаточно лишь одной маленькой, но приятной мысли. Вы идете по знакомой улице, ничего не мешает, не спешите, нет медведей и других опасностей. Заметили красивое дерево, оно вам напомнило что-то приятное.

Аксон помог найти эту информацию в каком-то нейроне и выработал положительные нейромедиаторы.

Нейромедиаторы попали в клетку с этим воспоминанием, та, в свою очередь, «обрадовалась» этим положительным моментом и направила и в свой аксон запрос на поиск совпадений. Тот находит их очень быстро и их тысячи, везде вырабатываются положительные нейромедиаторы.

В этом моменте, вы уже видите не просто «дерево», ваш мозг вам напомнил, как вы когда-то ездили с друзьями на озеро, шашлыки, музыка, лето.

Аксоны активно ищут еще больше совпадений, и вот уже условно весь мозг рад) Он стремится продлить это воспоминание и «дорисовывает» еще больше красок + вы уже фантазируете о будущем, теперь «совпадения не ищутся», а «создаются» исходя из прошлых событий.

— А как пройти до улицы Ленина? — кто-то вас спросил.

Так, встряска, норадреналина нам, глутамата, «отрубить» весь мелатонин… Мозг очень быстро перестраивается, что от нас хотят? Как пройти до Ленина, аксонам приказываю искать ответ в нейронах…

(Через 2-3 секунды вы отвечаете) – А, это вам туда до упора.

Вы, вдруг, осознаете, что не помните, как прошли последние 100-200 метров. Ведь только что были «шашлыки, озеро». Случалось?

   Итог:

  1. Мозг – очень сложная система примерно с квадриллионом связей между нейронами. Другое дело, что одни мы используем постоянно и они крепкие, надежные. Другие слабые – то, о чем мы не вспоминаем, они постепенно отмирают.

    Познавая новое – на месте старых нейронов создаются новые.

  2. Обычно мозг работает через органы чувств, рецепторы, вставочные нейроны, нейроны, дендриты и аксоны. Память и мечты изначально «копаются в нейронах», без применения органов чувств.

  3. В зависимости от обстоятельств мы мыслим по-разному.
  4. Мы рассказали поверхностно, ибо тема эта очень очень глубокая, возможно потянет даже на целую книгу. В любом случае, после прочтения этой статьи, мы думаем у вас появились несколько новых связей между нейронами.

Удачи в обучении, впереди много интересного и познавательного.

Источник: https://clevermind.ru/kak-rabotaet-mozg-i-mechty/

Как работает человеческий мозг | CMT: Научный подход

Как информация поступает в мозг

Александр Каплан (МГУ им. Ломоносова. Лаборатория нейрофизиологии и нейрокомпьютерных интерфейсов) провёл в стенах университета ИТМО лекцию «Мифы и реалии мозга человека: нейроинтерфейсы, искусственный интеллект, киборги и симбиоты», в которой рассказал про работу мозга и поделился мыслями о будущем взаимодействия человека и машин.

Кадр из кинофильма «Джонни Мнемоник»

Вокруг мозга и интеллекта много мифов, которые в перспективе могут стать устойчивым знанием. Наша работа сосредоточена на том, чтобы развеять эти мифы, — Александр Каплан

Из чего состоит человеческий мозг?

Это 86 миллиардов нервных клеток. Для понимания их работы важнее изучить не сами клетки, а их контакты друг с другом — каждая нервная клетка мозга (нейрон) имеет 10-15 тысяч контактов с другими клетками. Это миллион миллиардов операциональных единиц. Наш мозг управляет 640 мышцами и 360 суставами.

Например, 1 шаг — это работа 300 мышц, а поцелуй — 34.

Наш мозг особо не изменился по сравнению с кроманьонцами. Наш мозг уникален тем, что он не меняет свою структуру под внешние условия, а изменяет окружающую среду под себя.

86 миллиардов — это много или мало?

86 миллиардов нейронов — это очень много. У таких сравнительно умных животных, как обезьяна и дельфин — по 6-8 миллиардов нервных клеток. Настоящий рекордсмен — это слон; в его мозгу 250 млрд нейронов.

Почему слон не пишет музыку и не летает в космос, если у него так много нервных клеток? Дело в том, что у слона почти все нейроны размещены в мозжечке. Слон — очень крупное животное, ему нужно координировать огромное количество мышц, чтобы двигаться. Мозжечок как раз отвечает за координацию движений.

Как учёные считают количество нервных клеток?

Откуда мы знаем про то, сколько нервных клеток в мозге живых организмов? Все эти подсчёты сделала Сюзанна Херкулано-Хузел, профессор нейроанатомии из Рио-де-Жанейро (Бразилия). Результаты своего исследования она опубликовала в 2009 году.

Сюзанна брала мёртвый мозг и взбивала его в блендере, пока не получала что-то вроде смузи. Ядра клеток довольно прочные, поэтому они не пострадали от механического воздействия лезвий. Измерив количество нервных клеток на единицу объёма мозгового смузи, Сюзанна смогла посчитать примерное количество нейронов в мозгу человека, слона или дельфина.

Джонс — наркозависимый бывший военный дельфин из фильма «Джонни Мнемоник». Развитый интеллект этого дельфина позволял животному взламывать системы безопасности противника.

Как мы видим то, что мы видим?

Наши глаза — настоящее природное чудо. Свет фокусируется и попадает на дно глазного яблока, на котором располагаются примерно 120 миллионов светочувствительных «колбочек».

Нервные клетки возбуждаются и отправляют по нервному каналу электрический разряд, попадающий в заднюю часть мозга. Но эти разряды не несут в себе никаких изображений, как в компьютере.

После того, как отдел мозга получает электрический разряд от «колбочек», происходит реконструкция изображения.

На основании прошлого опыта. Здесь есть опасность, что мы можем обмануться в том, насколько соответствуют наши внутренние психические образы реальным.

Что такое красный цвет? Откуда мы вообще знаем, что красный — это красный, а зелёный — это зелёный? Цвет является результатом общественного договора. Большинство людей считают так.

Наша внутренняя психическая модель образа зависит от общественного мнения.

На протяжении всей жизни мы выстраиваем модель окружающего нас мира. Эта модель невероятно сложна. В ней мы учитываем даже физические законы, иначе мы бы не могли предсказать самим себе, как полетит мяч, например. Мы подгоняем реальность под нашу индивидуальную модель мира, и картина мира в мозгу достраивается постоянно.

Кадр из кинофильма «Матрица». Мир «Матрицы» является нейроинтерактивной моделью Земли конца XX века. Можно сказать, что принципы моделирования окружающего мира мозгом человека перешли и в Матрицу.

Наш мозг испытывает потребность в достраивании этой модели. Это желание побуждает нас изучать мир вокруг. Наша ментальная модель напрямую зависит от опыта.

Какой у нас объём памяти?

В мозге есть синапсы — контакты между нервными клетками. Эти контакты выступают в роли ячеек памяти. Память кодируется в конфигурации связей между этими синапсами.

Сам по себе синапс не очень скоростной. Время его отклика составляет 0,1 секунды, что крайне долго в сравнении с вычислительными возможностями современных компьютеров. Чтобы повысить свою скорость работы, синапсы действуют сообща. Такое сетевое распределение значительно повышает скорость работы мозга.

На сегодняшний день раскрытие тайны кодирования информации в мозге — наиболее финансируемая часть исследований нейронауки. Чтобы узнать это, учёные занимаются моделированием мозга и его работы — специальными рентгеновскими ножами они разрезают мозг на тончайшие пластинки, которые затем сканируются и «картографируются».

Сети синапсов обладают огромным объёмом памяти. Каждый из миллиардов синапсов имеет 26 состояний. Не два, как у традиционного транзистора в современных компьютерах, а 26.

Мозг — это не вычислительная, а пространственно-распредёленная система.

Каковы ресурсы мозга?

На сегодняшний день неврологические заболевания стали более летальными, чем сердечно-сосудистые заболевания и даже онкология. Можно сделать вывод, что наш мозг «упёрся в потолок» и исчерпывает свои ресурсы. Чтобы разгрузить наши головы, мы развиваем искусственный интеллект и системы автоматизации вычислительных модулей.

Сейчас ни в одном уголке мира нет настоящего искусственного интеллекта. По сути всё, что мы имеем сейчас — лишь эволюция калькуляторов. Мы не знаем, что назвать искусственным интеллектом, потому что не знаем, какой процесс назвать интеллектуальным, а какой — вычислительным.

Кто такой Homo augumenticus?

Александр Каплан считает, что будущее — за технологиями, которые используют различную периферию для расширения возможностей мозга по управлению техникой.

Например, Илон Маск (CEO Tesla и основатель компании Space X) создал компанию «Neuralink». Маск понимает, что для расширения возможностей мозга нужен интерфейс между мозгом и технической «надстройкой».

Кампания «Neuralink» призвана разрабатывать такие интерфейсы.

Кадр из кинофильма «Матрица»

Возможно, в будущем машины будут скрещены с человеком посредством нейроинтерфейсов. Люди станут так называемыми симбионтами — совсем как в серии видеоигр Deus Ex).

Трейлер к видеоигре Deus Ex: Mankind Divided показывает будущее, в котором люди массово пользуются различными улучшениями для тела. Такими, как многофункциональные протезы конечностей, имплантаты и многое другое.

Влад Чертыков
Впервые опубликовано в журнале «NEWTONEW», 12.05.2017

Источник: https://cmtscience.ru/article/kak-rabotaet-chelovecheskiy-mozg

Шесть фактов о работе мозга

Как информация поступает в мозг

В этой статье мы расскажем несколько интересных фактов о развитии и работе мозга, описанных в книге Риты Картер «Как работает мозг». На русском языке книга вышла в издательстве Corpus, её переводом занимался кандидат биологических наук Пётр Петров.

Картер — научная журналистка из Великобритании, свой путеводитель по работе мозга она написала в сотрудничестве с известным нейробиологом Кристофером Д. Фритом, выступившим научным консультантом книги.

Почему эту книгу можно назвать «путеводителем»? Дело в том, что Картер описывает в ней мозг в первую очередь как пространство, территорию, особый ландшафт, уделяя особое внимание тому, какие зоны мозга за какие задачи отвечают, в каких случаях они бывают задействованы по отдельности, а в каких — совместно. Для нашей короткой экскурсии по этой огромной территории мы выбрали только малую часть данных, что есть в книге.

1. Мозг удаляет ненужные связи между нейронами

Как улучшить интеллект ребёнка и не утратить собственный

Нейроны — клетки, отвечающие непосредственно за мозговую активность, — составляют примерно десятую часть от всех клеток мозга. Они похожи на корневые системы со множеством отростков, с помощью которых один нейрон соединяется с другими. Такая связь называется синапсом.

Поначалу, когда мы только рождаемся, наши нейроны незрелы, связи между ними образуются хаотично. Например, появляется много связей между слуховой и зрительной зонами коры головного мозга, в результате чего возникает знаменитый эффект синестезии — когда человек «слышит» цвета или «видит» звуки. 

Но одни синапсы используются чаще, а другие реже, и постепенно мозг начинает самостоятельно уничтожать те связи между нейронами, которые кажутся лишними.

Этот эффект называется прунингом (от англ. to prune — прореживать, подрезать ветви).

С одной стороны, это здорово, ведь прунинг повышает эффективность работы мозга. С другой, в процессе прунинга мы утрачиваем связи, отвечающие за интуитивные навыки и дарования. Например, фотографическая память, часто встречающаяся у маленьких детей, исчезает именно из-за прунинга.

Прунинг часто сравнивают с работой садовода, выпалывающего сорняки и отмирающие растения (в качестве иллюстрации использована картина Жоржа Сёра «Садовник»).

2. В мозгу младенца столько же нейронов, сколько у взрослых

Пост с картинками: Чем мозг ребёнка отличается от взрослого?

Да, мозг новорождённого значительно меньше, чем у взрослого, и после рождения его созревание продолжается ещё долго, до двадцати с небольшим лет. Однако число нейронов в мозгу новорождённого и взрослого примерно одинаково.

Другое дело, что функционируют они не столь эффективно. На отростках многих нейронов младенца не хватает миелина — жироподобного вещества, которое помогает нейронам передавать сигналы. Поэтому обширные области мозга новорождённого просто ещё не функционируют, особенно это касается коры больших полушарий. 

В этот период самые активные области мозга — те, что отвечают за рефлексы, чувствительность и движения. Отделы, задействованные в принятии решений, планировании и рассудочной деятельности, развиваются позже.

Миелин покрывает отросток нейрона своеобразными «чехлами», улучшая передачу сигналов

3. В подростковом возрасте изменяется работа префронтальной коры мозга

Разрешите вашему подростку прыгнуть с крыши в сугроб

Префронтальная кора (ПФК) — это передняя часть лобных долей мозга. Как раз её мы и задействуем при планировании и принятии решений.

Кроме того, она нужна нам для понимания других людей. После рождения число синапсов в ПФК постоянно возрастает, пока дело не доходит до подросткового возраста.

Тогда количество нейронных связей вдруг начинает снижаться.

Вы наверняка наслышаны про то, что за особенности поведения ребёнка в подростковый период отвечают гормоны. Так вот, не только они.

Вспомним про прунинг — именно с его помощью мозг в этом возрасте ведёт тонкую настройку ПФК. Естественно, в период прунинга этот отдел мозга должен быть менее активным, чем обычно.

Эксперименты показали, что во время выполнения задач, связанных с пониманием намерений других людей, у подростков активность ПФК довольно низкая.

Зато при обдумывании собственных намерений, наоборот, активность ПФК у подростков даже выше, чем у взрослых.

Исследование собственных возможностей и поиск персональных когнитивных стратегий — именно это, как считает наш мозг, главная задача подростка.

Прежде, чем понимать других, попробуй хотя бы себя понять (кадр из фильма «Отрочество»)

4. Отростки нейронов в правом полушарии длиннее, чем в левом

В паре строк: как мозг обрабатывает информацию?

Мы знаем, что большинство функций мозга обычно в большей степени связаны с одним из двух полушарий. Хотя они и работают сообща, мы возлагаем на левое полушарие ответственность за анализ и логику, точное и детальное восприятие; а на правое — за обобщение и абстрагирование, непосредственное чувственное восприятие.

Интересно, что нейроны у левого и правого полушарий по своей структуре также отличаются  — в правом полушарии нейроны расположены на большем расстоянии друг от друга, чем в левом. Это происходит потому, что у клеток правого полушария более длинные аксоны — соединительные отростки. 

Из-за этого правое полушарие лучше приспособлено для одновременного использования сразу нескольких модулей мозга, оно даёт нам широкое, хотя и расплывчатое представление о том или ином феномене.

5. Приступы паники и фобии запускает миндалина

Эмоциональная реакция страха — это сформировавшийся в процессе нашей эволюции защитный механизм. Это оперативная реакция на какой-то простой стимул, который мы воспринимаем как несущий опасность — неизвестное явление, большой объект, угрожающая поза.

Мы научились бояться, чтобы уметь выживать в огромном и опасном мире. Но что-то пошло не так.

У нас появились фобии. Они выражаются в сильной эмоции страха, но беда в том, что они не связаны с реальной опасностью. Фобии не помогают нам выживать, более того — мешают.

Представьте, что в здании пожар, и вам нужно спуститься по лестнице из окна. И вдруг вас парализует приступ боязни высоты.

То есть в ситуации реальной угрозы вашей жизни вы из-за фобии можете во вред себе отреагировать на угрозу мнимую.

Вечно молодой. Тайна пациента Г. М.

В основе таких приступов страха лежит разделение отделов мозга, отвечающих за формирование памяти. За формирование наших сознательных воспоминаний в первую очередь ответственен гиппокамп, и к нему мы обращаемся, когда вспоминаем какие-то образы и события. 

А вот бессознательная память хранится в других отделах, в частности — в миндалевидном теле, или миндалине. Миндалина записывает в том числе наши сильные эмоциональные и физиологические реакции (учащённое сердцебиение, потение и т. д.) и может воспроизводить их.

Когда мы вспоминаем что-то (например, как спуститься по высокой лестнице), мозг обращается не только к осознанной памяти из гиппокампа, но и к миндалине. Закрепившиеся в ней воспоминания могут быть практически неуправляемы. Они запускаются и заставляют человека заново пережить прежний приступ страха или психологическую травму.

Особенно часто бессознательные воспоминания формируются при стрессе — в это время мозг выделяет гормоны и нейромедиаторы, повышающие возбудимость миндалины.

Автора текста от этой картинки натурально бросает в дрожь

6. Для мозга освоение родного и иностранных языков — два разных процесса

В раннем детстве адекватное усвоение языка происходит естественным образом, если ребёнок с самого рождения слышит речь. И когда мы появляемся на свет, у нас есть потенциальная возможность освоить любой язык.

Но в основном ребёнка окружают люди, говорящие только на одном языке, и языковые возможности вскоре сужаются.

5 причин, почему вы учите язык безрезультатно

Нейронные связи, необходимые для распознавания незнакомых звуков иноязычной речи, атрофируются в процессе прунинга, если их не стимулировать. 

К пяти годам основные речевые зоны сосредотачиваются только в одном полушарии (обычно в левом), а оставшиеся без дела зоны другого полушария берут на себя другие функции, например, невербальную речь (жестикуляцию).

Когда мы впоследствии учим иностранный язык, мы задействуем оставшиеся связи, ориентируемся на родную речь и поэтому говорим с акцентом.

При этом информация, связанная с изучением родного и иностранных языков, обрабатывается мозгом в разных речевых зонах. Вот почему бывает так, что при поражении конкретной речевой зоны (например, при инсульте) человек может забыть родную речь, а способность общаться на выученном во взрослом возрасте иностранном языке у него останется.

Если вам хочется больше узнать об устройстве мозга, недавно мы писали про интересный веб-сервис — подробный интерактивный атлас мозга Connectopedia.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник: https://newtonew.com/science/shest-faktov-o-rabote-mozga

Интересные особенности работы мозга

Как информация поступает в мозг

С одной стороны, работа головного мозга изучена достаточно хорошо благодаря трудам сотен исследователей и современной аппаратуре. С иной – никто из учёных не может в подробностях рассказать, как работает мозг человека. Фактически вся наука и медицина основаны на предположениях, догадках, недоразумениях, косвенных результатах экспериментов и даже вере.

Изучение функционирования этого сложнейшего и самого непонятого в мире объекта – очень перспективное занятие, как для молодых специалистов, так и для опытных учёных, медиков, психологов. Мы попытаемся привести принципы работы головного мозга человека, основываясь на результатах экспериментов и достижениях современной науки.

Что такое мозг?

Это главный орган ЦНС, расположенный и хорошо защищённый от влияния на него факторов внешней среды черепной коробкой и мозговой жидкостью. Череп защищает от сильных механических воздействий, а жидкость, в которой мозговое вещество словно плавает, играет роль амортизатора.

Он состоит из двух тесно взаимодействующих полушарий, в состав коих входят миллиарды нейронов – нервных клеток. Каждая клетка является структурной единицей и связана с соседней массой нервных отростков – аксонов.

Те, в свою очередь, являются каналами передачи нервных импульсов и связаны синоптическими связями. Сигналы (нейромедиаторы) вырабатываются самими нейронами и передаются по каналам (аксонам), причём разные типы нейронов и вещества вырабатывают различные.

Кроме того, они способны генерировать слабые электрические токи.

Интересный факт! Известно, что все нейроны общаются между собой, даже находясь на значительном для их размеров расстоянии. Если бы это общение осуществлялось благодаря электрическим сигналам, внутри черепа «блуждали» бы огромные токи, но таковых нет.

Работа головного мозга человека достаточно подробно объяснена на молекулярном уровне, насколько это позволяет современное оборудование, но понимания того, как в результате взаимодействия миллиардов клеток головной мозг работает как единый организм, нет. Также никто не знает, какими принципами и механизмами координируется взаимодействие столь большого числа клеток.

Тут можно провести аналогии с пчелиной или муравьиной семьёй: один муравей или пчела, и даже несколько десятков или сотен особей, пускай в столь небольшой семье будут присутствовать все классы (рабочие, матка, кормящие расплод), не способны функционировать как один организм, полноценная семья. Только их число достигнет критического количества, всё встаёт на свои места, все делают своё дело, вроде кто-то всеми ими руководит со стороны.

Строение

Каждое полушарие выполняет определённые функции в организме и психической деятельности людей. Если с обеспечением существования тела картина хотя бы в общих чертах понятна, то ментальный план (мышление) для людей пока неосязаем. Как человек думает, неизвестно.

Головной мозг соединяется со спинным – массивным пучком нервных волокон, состоящим из более, чем 30 сегментов. По нему все сигналы передаются в головной мозг и обратно. Сам орган боли не чувствует, потому как не обладает нервными окончаниями.

Человеческий мозг окружен 3-мя оболочками:

  • твёрдая – соединительная ткань;
  • мягкая – обволакивает орган, заполняя собой все извилины, в ней не расположен ни один кровеносный сосуд;
  • паутинная – расположена между предыдущими, под ней находится подпаутинное пространство, заполненное спинномозговой жидкостью, амортизирующей резкие физические перегрузки (удары).

Кора – это пара полушарий, соединенных мозолистым телом – пучком нервов. Полушария условно разделены на отделы и центры, выполняющие преимущественно управление какой-либо одной функцией организма: кровообращение, дыхание. Строение мозга очень сложное, рассматривать все аспекты физиологии органа не будем.

Функционирование

Установлено, что полушария отвечают за работу противоположных частей тела: левое, по большему счёту, заставляет работать правую часть организма, а правое – левую. Общаются они между собой посредством моста – мозолистого тела.

Правое полушарие в целом отвечает за предметно-образное мышление, которое на порядки быстрее символьного (лучше раз увидеть, чем 7 раз услышать).

Людям с развитым левым полушарием (левши) проще оперировать образами, а не числами, им трудно понимать чертежи, диаграммы и графики.

Активизация и развитие левого полушария делает левшей творческими людьми (изобретатели, писатели, асы в разного рода искусствах и видах деятельности), одним словом – творцами.

Левая часть – это абстрактно-логическая деятельность. Работа человеческого мозга с более развитым этим полушарием делает своего владельца интеллектуалом, способным врать, не видеть целостности вещей, процессов и связей между ними.

То, что не увидишь

Эмоции – от них во многом зависит деятельность как мозга, так и организма в целом.

За выделение большинства гормонов, которые управляют почти всеми процессами в теле и его эмоциональным состоянием, отвечает лимбическая система.

Недостаток или чрезмерное количество гормонов приводит к тем или иным сбоям и изменениям в функционировании организма, изменению его эмоционального состояния. Во многом работа мозга человека зависит от уровня гормонов.

Мысли и память

Споры о том, что такое мысли, где находится память и каков принцип интеллектуальной деятельности, ведутся второй век, как минимум, но ответов на вопрос нет.

Одни ссылаются на отсутствие необходимой аппаратуры, которая ещё и не создана, скорее всего, вторые утверждают, что людям на нынешней ступени развития не дано многого понять, третьи доказывают, что ответ нужно искать не только под черепом.

Мозг – это приемопередатчик, который принимает информацию из вешней среды, обрабатывает её, вырабатывает реакции организма на её основе, а также посылает часть данных куда-то, во внешнюю среду.

До сих по не найдены центры или участки, в которых хранится весь наш опыт, отвечающие за память. Предположения того, что ячейки памяти находятся где-то далеко, а не в голове, становится всё более интересными научным кругам.

Ответ, как работает эта система, скрывается в молекуле ДНК, она является ключом к пониманию многих процессов во Вселенной, в том числе и в мозгу.

Как объяснить общение клеток между собой, если пропускной способности нервных волокон для передачи сигналов явно недостаточно.

Вывод: головной мозг человека работает на совершенно иных принципах, чем предполагают учёные. И тут необходимо присмотреться к основам квантовой механики.

Ритмы

Любой вид мозговой деятельности происходит на определённых частотах работы органа – ритмы. Их два вида:

  • альфа – частота 7-17 Гц, характеризуется состоянием сознательного покоя (медитация, сон);
  • бета – частота около 20 Гц – излучаются мозгом почти всегда.

Что интересно, бета-ритмы соответствуют частоте стоящих электромагнитных волн, расположенных между ионосферой и поверхностью Земли (волны Шумана).

Альфа-волны частотой 7,8 Гц генерируются процессами, происходящими на Солнце и в облаках. Они задают ритм жизни на планете, им и подчиняется мозговая деятельность. 2-я гармоника резонанса Шумана равняется 14 герцам, что соответствует состоянию мозга, когда он готов обучаться – получать, усваивать и обрабатывать информацию, а также вырабатывать на её основе новую.

Если кто так и не понял, как работает мозг человека, значит всё в порядке. С одной стороны – это очень сложный орган, электрохимическая машина, работа коего издали напоминает функционирование транзистора (но очень сложного), а с иной – это не самодостаточный орган, он тесно взаимосвязан с окружающим миром, происходящими вокруг и вдали от нас процессами, а также активностью Солнца.

Немалый процент учёных согласны, что 95-98% ДНК, относимых к мусорным генам, играют важную роль в жизнедеятельности живых организмов.

Что такое сознание и бессознательное, сновидения, куда девается сознание во время сна или, например, получения серьёзных травм, как мозг связан с окружающей средой, куда деваются мысли, почему многие вещи мы делаем рефлекторно…вот лишь мизерная часть вопросов, ответ на которые должен дать человек в ближайшем будущем.

Источник: https://vsepromozg.ru/teoriya/rabota-mozga

Как работает мозг?

Как информация поступает в мозг

Этот пост написан по мотивам лекции Джеймса Смита, профессора Висконсинского университета в Мадисоне, специализирующегося в микроэлектронике и архитектуре вычислительных машин.

История компьютерных наук в целом сводится к тому, что учёные пытаются понять, как работает человеческий мозг, и воссоздать нечто аналогичное по своим возможностям.

Как именно учёные его исследуют? Представим, что в XXI веке на Землю прилетают инопланетяне, никогда не видевшие привычных нам компьютеров, и пытаются исследовать устройство такого компьютера.

Скорее всего, они начнут с измерения напряжений на проводниках, и обнаружат, что данные передаются в двоичном виде: точное значение напряжения не важно, важно только его наличие либо отсутствие.

Затем, возможно, они поймут, что все электронные схемы составлены из одинаковых «логических вентилей», у которых есть вход и выход, и сигнал внутри схемы всегда передаётся в одном направлении.

Если инопланетяне достаточно сообразительные, то они смогут разобраться, как работают комбинационные схемы — одних их достаточно, чтобы построить сравнительно сложные вычислительные устройства.

Может быть, инопланетяне разгадают роль тактового сигнала и обратной связи; но вряд ли они смогут, изучая современный процессор, распознать в нём фон-неймановскую архитектуру с общей памятью, счётчиком команд, набором регистров и т.п. Дело в том, что по итогам сорока лет погони за производительностью в процессорах появилась целая иерархия «памятей» с хитроумными протоколами синхронизации между ними; несколько параллельных конвейеров, снабжённых предсказателями переходов, так что понятие «счётчика команд» фактически теряет смысл; с каждой командой связано собственное содержимое регистров, и т.д. Для реализации микропроцессора достаточно нескольких тысяч транзисторов; чтобы его производительность достигла привычного нам уровня, требуются сотни миллионов. Смысл этого примера в том, что для ответа на вопрос «как работает компьютер?» не нужно разбираться в работе сотен миллионов транзисторов: они лишь заслоняют собой простую идею, лежащую в основе архитектуры наших ЭВМ.

Моделирование нейронов

Кора человеческого мозга состоит из порядка ста миллиардов нейронов. Исторически сложилось так, что учёные, исследующие работу мозга, пытались охватить своей теорией всю эту колоссальную конструкцию.

Строение мозга описано иерархически: кора состоит из долей, доли — из «гиперколонок», те — из «миниколонок»… Миниколонка состоит из примерно сотни отдельных нейронов. По аналогии с устройством компьютера, абсолютное большинство этих нейронов нужны для скорости и эффективности работы, для устойчивости ко сбоям, и т.п.

; но основные принципы устройства мозга так же невозможно обнаружить при помощи микроскопа, как невозможно обнаружить счётчик команд, рассматривая под микроскопом микропроцессор.

Поэтому более плодотворный подход — попытаться понять устройство мозга на самом низком уровне, на уровне отдельных нейронов и их колонок; и затем, опираясь на их свойства — попытаться предположить, как мог бы работать мозг целиком.

Примерно так пришельцы, поняв работу логических вентилей, могли бы со временем составить из них простейший процессор, — и убедиться, что он эквивалентен по своим способностям настоящим процессорам, даже хотя те намного сложнее и мощнее.

На рисунке, приведённом чуть выше, тело нейрона (слева) — небольшое красное пятнышко в нижней части; всё остальное — дендриты, «входы» нейрона, и один аксон, «выход». Разноцветные точки вдоль дендритов — это синапсы, которыми нейрон соединён с аксонами других нейронов.

Работа нейронов описывается очень просто: когда на аксоне возникает «всплеск» напряжения выше порогового уровня (типичная длительность всплеска 1мс, уровень 100мВ), то синапс «пробивается», и всплеск напряжения переходит на дендрит. При этом всплеск «сглаживается»: вначале напряжение за 5..

20мс растёт до порядка 1мВ, затем экспоненциально затухает; таким образом, длительность всплеска растягивается до ~50мс. Если несколько синапсов одного нейрона активизируются с небольшим интервалом по времени, то «разглаженные всплески», возбуждаемые в нейроне каждым из них, складываются. Наконец, если одновременно активны достаточно много синапсов, то напряжение на нейроне поднимается выше порогового уровня, и его собственный аксон «пробивает» синапсы связанных с ним нейронов. Чем мощнее были исходные всплески, тем быстрее растут разглаженные всплески, и тем меньше будет задержка до активизации следующих нейронов.

Кроме того, бывают «тормозящие нейроны», активация которых понижает общее напряжение на связанных с ним нейронах. Таких тормозящих нейронов 15..25% от общего числа.

https://www.youtube.com/watch?v=fA_NeAtv8v4

У каждого нейрона тысячи синапсов; но в любой момент времени активны не больше десятой части всех синапсов. Время реакции нейрона — единицы мс; такого же порядка задержки на распространение сигнала вдоль дендрита, т.е. эти задержки оказывают существенное влияние на работу нейрона.

Наконец, пару соседних нейронов, как правило, связывает не один синапс, а порядка десятка — каждый с собственным расстоянием до тел обоих нейронов, а значит, с собственной длительностью задержки. На иллюстрации справа два нейрона, изображённые красным и синим, связаны шестью синапсами.

У каждого синапса своё «сопротивление», понижающее входящий сигнал (в примере выше — со 100мВ до 1мВ).

Это сопротивление динамически подстраивается: если синапс активизировался сразу перед активацией аксона — то, видимо, сигнал с этого синапса хорошо коррелирует с общим выводом, так что сопротивление понижается, и сигнал будет вносить больший вклад в напряжение на нейроне.

Если же синапс активизировался сразу после активации аксона — то, видимо, сигнал с этого синапса не имел отношения к активации аксона, так что сопротивление синапса повышается.

Если два нейрона связаны несколькими синапсами с разной длительностью задержки, то такая подстройка сопротивлений позволяет выбрать оптимальную задержку, или оптимальную комбинацию задержек: сигнал начинает доходить именно тогда, когда от него больше всего пользы.

Таким образом, модель нейрона, принятая исследователями нейронных сетей — с единственной связью между парой нейронов и с мгновенным распространением сигнала от одного нейрона к другому — весьма далека от биологической картины.

Кроме того, традиционные нейронные сети оперируют не временем отдельных всплесков, а их частотой: чем чаще всплески на входах нейрона, тем чаще будут всплески на выходе.

Те детали устройства нейрона, которые отброшены в традиционной модели — существенны или несущественны они для описания работы мозга? Нейробиологи накопили огромную массу наблюдений об устройстве и поведении нейронов — но какие из этих наблюдений проливают свет на общую картину, а какие — лишь «детали реализации», и — как и предсказатель переходов в процессоре — не влияют ни на что, кроме эффективности работы? Джеймс считает, что именно временны́е характеристики взаимодействия между нейронами и позволяют приблизиться к пониманию вопроса; что асинхронность так же важна для работы мозга, как синхронность — для работы ЭВМ.

Ещё одна «деталь реализации» — ненадёжность нейрона: с некоторой вероятностью он может активизироваться спонтанно, даже если сумма напряжений на его дендритах не достигает порогового уровня.

Благодаря этому, «обучение» колонки нейронов можно начинать с любого достаточно большого сопротивления на всех синапсах: вначале никакая комбинация активаций синапсов не будет приводить к активации аксона; затем спонтанные всплески приведут к тому, что понизится сопротивление синапсов, которые активизировались незадолго до этих спонтанных всплесков.

Таким образом нейрон начнёт распознавать конкретные «паттерны» входных всплесков. Что самое важное, паттерны, похожие на те, на которых нейрон обучался, — тоже будут распознаваться, но всплеск на аксоне будет тем слабее и/или позднее, чем меньше нейрон «уверен» в результате.

Обучение колонки нейронов получается намного эффективнее, чем обучение обычной нейронной сети: колонке нейронов не нужен контрольный ответ для тех образцов, на которых она обучается — фактически, она не распознаёт, а классифицирует входные паттерны.

Кроме того, обучение колонки нейронов локализовано — изменение сопротивления синапса зависит от поведения лишь двух соединённых им нейронов, и никаких других. В результате этого, обучение приводит к изменению сопротивлений вдоль пути следования сигнала, тогда как при обучении нейронной сети веса изменяются в обратном направлении: от нейронов, ближайших к выходу — к нейронам, ближайшим ко входу.

Например, вот колонка нейронов, обученная распознавать паттерн всплесков (8,6,1,6,3,2,5) — значения обозначают время всплеска на каждом из входов. В результате обучения, задержки настроились на точное соответствие распознаваемому паттерну, так что напряжение на аксоне, вызываемое правильным паттерном, получается максимально возможным (7): Та же самая колонка отреагирует на похожий входной паттерн (8,5,2,6,3,3,4) меньшим всплеском (6), причём напряжение достигает порогового уровня заметно позднее:

Наконец, тормозящие нейроны могут использоваться для реализации «обратной связи»: например, как на иллюстрации справа, — подавлять повторные всплески на выходе, когда вход длительное время остаётся активным; или подавлять всплеск на выходе, если он слишком задерживается по сравнению со входными сигналами, — чтобы сделать классификатор более «категоричным»; или, в нейросхеме для распознавания паттернов, разные колонки-классификаторы могут быть связаны тормозящими нейронами, чтобы активация одного классификатора автоматически подавляла все остальные классификаторы.

Распознавание изображений

Для распознавания рукописных цифер из базы MNIST (28×28 пикселей в оттенках серого) Джеймс из колонок-классификаторов, описанных выше, собрал аналог пятислойной «свёрточной нейросети». Каждая из 64 колонок в первом слое обрабатывает фрагмент 5х5 пикселей из исходного изображения; такие фрагменты перекрываются.

Колонки второго слоя обрабатывают по четыре выхода из первого слоя каждая, что соответствует фрагменту 8х8 пикселей из исходного изображения. В третьем слое всего четыре колонки — каждой соответствует фрагмент из 16х16 пикселей. Четвёртый слой — итоговый классификатор — разбивает все изображения на 16 классов: класс назначается в соответствии с тем, который из нейронов активизируется первым.

Наконец, пятый слой — классический перцептрон, соотносящий 16 классов с 10 контрольными ответами. Классические нейросети достигают на базе MNIST точности 99.5% и даже выше; но по утверждению Джеймса, его «гиперколонка» обучается за гораздо меньшее число итераций, благодаря тому, что изменения распространяются вдоль пути следования сигнала, а значит, затрагивают меньшее число нейронов.

Как и для классической нейросети, разработчик «гиперколонки» определяет только конфигурацию соединений между нейронами, а все количественные характеристики гиперколонки — т.е. сопротивление синапсов с разными задержками — приобретаются автоматически в процессе обучения.

Кроме того, для работы гиперколонки требуется на порядок меньшее число нейронов, чем для аналогичной по возможностям нейросети.

С другой стороны, симуляция таких «аналоговых нейросхем» на электронном компьютере несколько затрудняется тем, что в отличие от цифровых схем, работающих с дискретными сигналами и с дискретными интервалами времени — для работы нейросхем важны непрерывность изменения напряжений и асинхронность нейронов. Джеймс утверждает, что шага симуляции в 0.

1мс достаточно для корректной работы его распознавателя; но он не уточнял, сколько «реального времени» занимает обучение и работа классической нейросети, и сколько — обучение и работа его симулятора. Сам он давно на пенсии, и свободное время он посвящает совершенствованию своих аналоговых нейросхем.

Резюме от tyomitch: представлена модель, основанная на биологических предпосылках, достаточно просто устроенная, и при этом обладающая интересными свойствами, радикально отличающими её от привычных цифровых схем и от нейросетей. Возможно, такие «аналоговые нейроны» станут элементной базой будущих устройств, которые смогут справляться с рядом задач — например, с распознованием образов — не хуже человеческого мозга; точно так же, как цифровые схемы давно превзошли человеческий мозг в способности к счёту.

  • нейронные сети
  • искусственный интеллект
  • аналоговые вычисления
  • гиктаймсота

Источник: https://habr.com/post/250625/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.